Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak ( for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 25, Number 2, 2020

Application of the phase-space distribution approach of Monte Carlo for radiation contamination dose estimation from the (n,γ), (γ,n) nuclear reactions and linac leakage photons in the megavoltage radiotherapy facility

Amir Ghasemi-Jangjoo, Hosein Ghiasi


Aim The aim of this study was to characterize the radiation contamination inside and outside the megavoltage radiotherapy room. Background Radiation contamination components in the 18 MV linac room are the secondary neutron, prompt gamma ray, electron and linac leakage radiation. Materials and Methods An 18 MV linac modeled in a typical bunker employing the MCNPX code of Monte Carlo. For fast calculation, phase-space distribution (PSD) file modeling was applied and the calculations were conducted for the radiation contamination components dose and spectra at 6 locations inside and outside the bunker. Results The results showed that the difference of measured and calculated percent depth-dose (PDD) and photo beam-profile (PBP) datasets were lower than acceptable values. At isocenter, the obtained photon dose and neutron fluence were 2.4 × 10−14 Gy/initial e° and 2.22 × 10-8 n°/cm2, respectively. Then, neutron apparent source strength (QN) value was found as 1.34 × 1012 n°/Gy X at isocenter and the model verified to photon and neutron calculations. A surface at 2 cm below the flattening filter was modeled as phase-space (PS) file for PDD and PBP calculations. Then by use of a spherical cell in the center of the linac target as a PS surface, contaminant radiations dose, fluence and spectra were estimated at 6 locations in a considerably short time, using the registered history of all particles and photons in the 13GB PSD file as primary source in the second step. Conclusion Designing the PSD file in MC modeling helps user to solve the problems with complex geometry and physics precisely in a shorter run-time.

Signature: Rep Pract Oncol Radiother, 2020; 25(2) : 233-240

« back


Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.