Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak (michal.masternak@ucf.edu) for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 24, Number 6, 2019

Detailed analysis of dose difference in using water as tissue-equivalent material in 252Cf brachytherapy

Izadi Vasafi Gholamhossein, Mehdi Firoozabadi Mohammad, Ghorbani Mahdi

Summary:

Aim The purpose of this study is to analyse how small variations in the elemental composition of soft tissue lead to differences in dose distributions from a 252Cf brachytherapy source and to determine the error percentage in using water as a tissue-equivalent material. Background Water is normally used as a tissue-equivalent phantom material in radiotherapy dosimetry. Materials and methods Neutron energy spectra, neutron and gamma-ray dose rate distributions were calculated for a 252Cf AT source located at the center of a spherical phantom filled with various types of tissue compositions: adipose, brain, muscle, International Commission on Radiation Units and Measurements (ICRU) report No. 44 9-component soft tissue and water, using Monte Carlo simulation. Results The obtained results showed differences between total dose rates in various tissues relative to water varying between zero and 4.94%. The contributions of neutron and total gamma ray doses to these differences are, on average, 81% and 19%, respectively. It was found that the dose differences between various soft tissues and water depend not only on the soft tissue composition, but also on the beam type emitted from the 252Cf source and the distance from the source. Conclusion Assuming water as a tissue-equivalent material, although leads to overestimation of dose rate (except in the case of adipose tissue), is acceptable and suitable for use in 252Cf brachytherapy treatment planning systems based on the recommendation by the ICRU that the uncertainties in dose delivery in radiotherapy should be lower than 5%.

Signature: Rep Pract Oncol Radiother, 2019; 24(6) : 660-666


« back

 
INDEXED IN:

Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.

http://www.sciencedirect.com/science/journal/15071367/19/2