Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak (michal.masternak@ucf.edu) for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 24, Number 5, 2019

Determination of an inflection point for a dosimetric analysis of unflattened beam using the first principle of derivatives by python code programming

Ravindra Shende, Gourav Gupta, Subash Macherla

Summary:

Background Practice of Unflattened or Flattening filter free (FFF) beam has become the high dose standard in radiotherapy (RT), such as stereotactic radio-surgery (SRS) and stereotactic radiotherapy (SRT). The removal of a flattening filter (FF) from the path of a photon beam alters the characteristics of FFF beam. Since the conventional route for dosimetric analysis of FF beam cannot be applied to FFF beam, the procedure of analyzing beam characteristics for FFF beam based on inflection points (IPs) is used. IP is a point where the concavity change observed corresponds to its change in sign (±) of the second derivative. Aim The objective of the study is to determine IPs for dosimetric analysis of the FFF beam profile. Methods and materials In this study, IPs are determined through the python code programming based on the mathematical first principle of the derivative. They are compared with IPs estimated by the conventional graphical manual method using Microsoft Excel (MS). IPs and their dependent dosimetric parameters determined by both mathematical and graphical manual methods are compared. Results Percentage differences between the IPs determined by both methods, for 6MVFFF inline and crossline beam profile are found to be 2.7% and 0.8% respectively. Similarly, the average penumbra differences for 6MVFFF inline and crossline beam profile are found to be 0.15 mm and 0.9 mm, respectively. However, differences in the field width between both methods are found insignificant. Conclusion Graphical manual method is very time-consuming, tedious and user dependent. However, the mathematical method through python code programming is more precise, faster and independent of individual users.

Signature: Rep Pract Oncol Radiother, 2019; 24(5) : 432-442


« back

 
INDEXED IN:

Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.

http://www.sciencedirect.com/science/journal/15071367/19/2