Dear Authors,
If you believe that your paper was mistakenly rejected by other leading journals and you do not agree with final decision, the editors of Reports of Practical Oncology and Radiotherapy offer new fast track review. You may submit your manuscript to Reports of Practical Oncology and Radiotherapy together with all prior peer-reviews obtained from the other journal and your rebuttal letter. We guarantee review based decision within 72 hours from the time we will receive your manuscript.

Fast track submission process: Please submit the manuscript with all reviews and rebuttal letter by email to Dr. Michal Masternak (michal.masternak@ucf.edu) for fast review processing. To assure immediate attention the email title must to include: RPOR-fast track- Last Name First Name (of corresponding author).

Volume 23, Number 2, 2018

Extended localization and adaptive dose calculation using HU corrected cone beam CT: Phantom study

K Mohamathu Rafic, S Amalan, B S Timothy Peace, B Paul Ravindran

Summary:

Background and aim

The practicability of computing dose calculation on cone beam CT (CBCT) has been widely investigated. In most clinical scenarios, the craniocaudal scanning length of CBCT is found to be inadequate for localization. This study aims to explore extended tomographic localization and adaptive dose calculation strategies using Hounsfield unit (HU) corrected CBCT image sets.

Materials and methods

Planning CT (pCT) images of the Rando phantom (T12-to-midthigh) were acquired with pelvic-protocol using Biograph CT-scanner. Similarly, half-fan CBCT were acquired with fixed parameters using Clinac2100C/D linear accelerator integrated with an on-board imager with 2-longitudinal positions of the table. For extended localization and dose calculation, two stitching strategies viz., one with “penumbral-overlap” (S1) and the other with “no-overlap” (S2) and a local HU-correction technique were performed using custom-developed MATLAB scripts. Fluence modulated treatment plans computed on pCT were mapped with stitched CBCT and the dosimetric analyses such as dose-profile comparison, 3D-gamma (γ) evaluation and dose-volume histogram (DVH) comparison were performed.

Results

Localizing scanning length of CBCT was extended by up to 15 cm and 16 cm in S1 and S2 strategies, respectively. Treatment plan mapping resulted in minor variations in the volumes of delineated structures and the beam centre co-ordinates. While the former showed maximum variations of −1.4% and −1.6%, the latter showed maximum of 1.4 mm and 2.7 mm differences in anteroposterior direction in S1 and S2 protocols, respectively. Dosimetric evaluations viz., dose profile and DVH comparisons were found to be in agreement with one another. In addition, γ-evaluation results showed superior pass-rates (≥98.5%) for both 3%/3 mm dose-difference (DD) and distance-to-agreement (DTA) and 2%/2 mm DD/DTA criteria with desirable dosimetric accuracy.

Conclusion

Cone beam tomographic stitching and local HU-correction strategies developed to facilitate extended localization and dose calculation enables routine adaptive re-planning while circumventing the need for repeated pCT.

Signature: Rep Pract Oncol Radiother, 2018; 23(2) : 126-135


« back

 
INDEXED IN:

Indexed in: EMBASE®, the Excerpta Medica database, the Elsevier BIOBASE (Current Awareness in Biological Sciences) and in the Index Copernicus.

http://www.sciencedirect.com/science/journal/15071367/19/2